Magnetic resonance imaging tracking and assessing repair function of the bone marrow mesenchymal stem cells transplantation in a rat model of spinal cord injury

نویسندگان

  • Hongwu Zhang
  • Liqin Wang
  • Shihong Wen
  • Qingfeng Xiang
  • Xianhong Xiang
  • Caixia Xu
  • Yong Wan
  • Jingnan Wang
  • Bin Li
  • Yiqian Wan
  • Zhiyun Yang
  • David Y .B. Deng
چکیده

The transplantation of bone marrow mesenchymal stem cells (BMSCs) to repair spinal cord injury (SCI) has become a promising therapy. However, there is still a lack of visual evidence directly implicating the transplanted cells as the source of the improvement of spinal cord function. In this study, BMSCs were labeled with NF-200 promoter and lipase-activated gadolinium-containing nanoparticles (Gd-DTPA-FA). Double labeled BMSCs were implanted into spinal cord transaction injury in rat models in situ, the function recovery was evaluated on 1st, 7th, 14th, 28 th days by MRI, Diffusion Tensor Imaing, CT imaging and post-processing, and histological observations. BBB scores were used for assessing function recovery. After transplantation of BMSCs, the hypersignal emerged in spinal cord in T1WI starting at day 7 that was focused at the injection site, which then increased and extended until day 14. Subsequently, the increased signal intensity area rapidly spread from the injection site to entire injured segment lasting four weeks. The diffusion tensor tractography and histological analysis both showed the nerve fibre from dividing to connecting partly. Immunofluorescence showed higher expression of NF-200 in Repaired group than Injury group. Electron microscopy showed detachment and loose of myelin lamellar getting better in Repaired group compared with the Injury group. BBB scores in Repaired group were significantly higher than those of injury animals. Our study suggests that the migration and distribution of Gd-DTPA-FA labeled BMSCs can be tracked using MRI. Transplantation of BMSCs represents a promising potential strategy for the repair of SCI.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mesenchymal Stem Cells as an Alternative for Schwann Cells in Rat Spinal Cord Injury

Background: Spinal cord has a limited capacity to repair therefore, medical interventions are necessary for treatment of injuries. Transplantation of Schwann cells has shown a great promising result for spinal cord injury (SCI). However, harvesting Schwann cell has been limited due to donor morbidity and limited expansion capacity. Furthermore, accessible sources such as bone marrow stem cells ...

متن کامل

Effects of Local Transplantation of Autologous Bone Marrow Mesenchymal Stem Cells in Combination with Low Level Laser Therapy in Repair of Experimental Acute Spinal Cord Injury in Rats

Objective- The aim of this study was to demonstrate the efficacy MSCs transplantation in combination with low level laser irradiation (low level laser irradiation) in repair of experimental acute spinal cord injury. Design- Experimental study. Animals- 28 adult male Wistar Rats. Procedures- A ballon- compression technique was used to produce an injury at the T8-T9 level of spi...

متن کامل

Improvement of Spinal Cord Injury in Rat Model via Transplantation of Neural Stem Cells Derived From Bone Marrow

Abstract Background & Aims: Cell therapy is among the novel therapeutic methods effective in the treatment of spinal cord injuries. The aim of the present study was using neural stem cells (NSCs) in treating contusion spinal cord injury in rat model. Methods: Bone marrow stromal cells (BMSCs) were isolated from adult rats...

متن کامل

Impacts of Bone Marrow Stem Cells on Caspase-3 Levels after Spinal Cord Injury in Mice

Spinal cord injury (SCI) is a drastic disability that leads to spinal cord impairment. This study sought to determine the effects of bone marrow stem cells (BMSCs) on caspase-3 levels after acute SCI in mice. Forty-two mice were randomly divided into 3 groups: control (2 subcategories), subjected to no intervention; sham (3 subcategories), subjected to acute SCI; and experimental (2 subcategori...

متن کامل

O1: Modeling of Mesenchymal Stem Cell-Derived Magnetite Nanoparticles for The Rehabilitation of Immune System Function and Reducing Inflammation and Promoting Myelination in the Treatment of MS Disease

By Using the modeling of the mesenchymal (bone marrow) stem cell nanoparticles, the reinstatement of the immune system leads to the treatment of MS, result in the formation of a new immune system for the body by stem cell. The presence of stem cells promotes and strengthens myelination, and that, using simulation and 3D modeling, stem cells can be transmitted correctly to the target and place o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017